3. Appendix Inverses of Arithmetic functions

A result stated and not proved in the lectures was

Theorem 3.40 An arithmetic function f has an inverse under * if, and only if, $f(1) \neq 0$.

Proof (\Rightarrow) Assume f has an inverse, g say, so $g * f = \delta$. In particular $g * f(1) = \delta(1) = 1$, i.e.

$$g(1) f(1) = 1. (15)$$

Hence $f(1) \neq 0$.

(\Leftarrow) Assume that $f(1) \neq 0$. Define g inductively.

So start with g(1) f(1) = 1, i.e. g(1) = 1/f(1).

Assume that g(n) has been defined for all $1 \le n \le k$. Define g(k+1) to ensure that

$$\sum_{ab=k+1} g(a) f(b) = 0, \quad \text{i.e.} \quad g(k+1) f(1) = -\sum_{\substack{ab=k+1\\a \neq k+1}} g(a) f(b). \tag{16}$$

This definition makes sense. In the sum on the right hand side we have ab = k+1 and $a \neq k+1$, in which case $a \leq k$ and we have assumed g has already been defined on these a and the values can be fed in to give the definition of g(k+1).

In this way the infinite sequence of equalities

$$g * f(1) = \delta(1) = 1, g * f(2) = \delta(2) = 0, g * f(3) = \delta(3) = 0, \vdots$$

are satisfied. Thus

$$\sum_{ab=n} g(a) f(b) = \delta(n) \,,$$

for all $n \ge 1$ which means $g * f = \delta$.

We can go further and ask, if f is multiplicative and $f(1) \neq 0$ is f^{-1} multiplicative?

Theorem 3.41 If f is multiplicative and has an inverse f^{-1} then the inverse is multiplicative.

Proof Assume that f is multiplicative. Then $f(1) = 1 \neq 0$ and so by the previous theorem f has an inverse, defined iteratively by $f^{-1}(1) = 1$ and

$$f^{-1}(N) = -\sum_{\substack{d|N\\d \neq N}} f^{-1}(d) f\left(\frac{N}{d}\right),$$
(17)

for all $N \geq 2$.

We require to show that $f^{-1}(m_1m_2) = f^{-1}(m_1) f^{-1}(m_2)$ for all coprime pairs (m_1, m_2) . The proof is by induction on m_1m_2 .

The base case is the coprime pair (m_1, m_2) with $m_1m_2 = 1$. This is just $m_1 = m_2 = 1$. From its definition we have $f^{-1}(1) = 1$ in which case $f^{-1}(1) = 1 = f^{-1}(1) f^{-1}(1)$ and so the result holds in this case.

Assume that $f^{-1}(m_1m_2) = f^{-1}(m_1) f^{-1}(m_2)$ for all coprime pairs with $m_1m_2 \leq k$, for some $k \geq 2$.

Let (n_1, n_2) be a coprime pair with $n_1n_2 = k+1$. Apply (17) with $N = n_1n_2$ to get

$$f^{-1}(n_1 n_2) = -\sum_{\substack{d \mid n_1 n_2 \\ d \neq n_1 n_2}} f^{-1}(d) f\left(\frac{n_1 n_2}{d}\right).$$

Because gcd $(n_1, n_2) = 1$, there is a one-to-one map between the divisors d of n_1n_2 and the pairs of divisors (d_1, d_2) with $d_1|n_1$ and $d_2|n_2$. Thus

$$f^{-1}(n_1n_2) = -\sum_{\substack{d_1|n_1 \ d_2|n_2\\d_1d_2 \neq n_1n_2}} f^{-1}(d_1d_2) f\left(\frac{n_1}{d_1}\frac{n_2}{d_2}\right)$$

In this sum $d_1d_2 \neq n_1n_2$ and so $d_1d_2 < n_1n_2$, i.e. $d_1d_2 \leq k$. By the inductive hypothesis $f^{-1}(d_1d_2) = f^{-1}(d_1) f^{-1}(d_1)$. Hence

$$f^{-1}(n_1 n_2) = -\sum_{\substack{d_1 \mid n_1 \ d_2 \mid n_2 \\ d_1 d_2 \neq n_1 n_2}} f^{-1}(d_1) f^{-1}(d_2) f\left(\frac{n_1}{d_1}\right) f\left(\frac{n_2}{d_2}\right)$$
$$= -\sum_{\substack{d_1 \mid n_1 \ d_2 \mid n_2 \\ d_1 \neq n_1, d_2 \neq n_2}} \dots -\sum_{\substack{d_1 \mid n_1 \ d_2 \mid n_2 \\ d_1 = n_1, d_2 \neq n_2}} \dots -\sum_{\substack{d_1 \mid n_1 \ d_2 \mid n_2 \\ d_1 \neq n_1, d_2 = n_2}} \dots$$
(18)

The first term here equals

$$-\left(-\sum_{\substack{d_1|n_1\\d_1\neq n_1}} f^{-1}(d_1) f\left(\frac{n_1}{d_1}\right)\right) \left(-\sum_{\substack{d_2|n_2\\d_2\neq n_2}} f^{-1}(d_2) f\left(\frac{n_2}{d_2}\right)\right)$$
$$= -f^{-1}(n_1) f^{-1}(n_2)$$

by (17) applied twice with $N = n_1$ and $N = n_2$. The second term in (18) equals

$$\sum_{\substack{d_1|n_1 \ d_2|n_2 \\ d_1=n_1, d_2 \neq n_2}} f^{-1}(d_1) \ f^{-1}(d_2) \ f\left(\frac{n_1}{d_1}\right) \ f\left(\frac{n_2}{d_2}\right)$$
$$= \sum_{\substack{d_2|n_2 \\ d_2 \neq n_2}} f^{-1}(n_1) \ f^{-1}(d_2) \ f(1) \ f\left(\frac{n_2}{d_2}\right)$$
$$= -f^{-1}(n_1) \ f^{-1}(n_2) \ ,$$

by (17) applied with $N = n_2$. And the same result holds for the third term in (18). Thus

$$f^{-1}(n_1 n_2) = -f^{-1}(n_1) f^{-1}(n_2) + f^{-1}(n_1) f^{-1}(n_2) + f^{-1}(n_1) f^{-1}(n_2)$$

= $f^{-1}(n_1) f^{-1}(n_2) .$

So the result holds for all coprime pairs with product k + 1. Hence, by induction, the result holds for all coprime pairs, i.e. f^{-1} is multiplicative.