3. Appendix Inverses of Arithmetic functions

A result stated and not proved in the lectures was
Theorem 3.40 An arithmetic function f has an inverse under $*$ if, and only if, $f(1) \neq 0$.

Proof (\Rightarrow) Assume f has an inverse, g say, so $g * f=\delta$. In particular $g * f(1)=\delta(1)=1$, i.e.

$$
\begin{equation*}
g(1) f(1)=1 \text {. } \tag{15}
\end{equation*}
$$

Hence $f(1) \neq 0$.
(\Leftarrow) Assume that $f(1) \neq 0$. Define g inductively.
So start with $g(1) f(1)=1$, i.e. $g(1)=1 / f(1)$.
Assume that $g(n)$ has been defined for all $1 \leq n \leq k$. Define $g(k+1)$ to ensure that

$$
\begin{equation*}
\sum_{a b=k+1} g(a) f(b)=0, \quad \text { i.e. } \quad g(k+1) f(1)=-\sum_{\substack{a b=k+1 \\ a \neq k+1}} g(a) f(b) \tag{16}
\end{equation*}
$$

This definition makes sense. In the sum on the right hand side we have $a b=k+1$ and $a \neq k+1$, in which case $a \leq k$ and we have assumed g has already been defined on these a and the values can be fed in to give the definition of $g(k+1)$.

In this way the infinite sequence of equalities

$$
\begin{aligned}
g * f(1) & =\delta(1)=1 \\
g * f(2) & =\delta(2)=0 \\
g * f(3) & =\delta(3)=0
\end{aligned}
$$

are satisfied. Thus

$$
\sum_{a b=n} g(a) f(b)=\delta(n)
$$

for all $n \geq 1$ which means $g * f=\delta$.

We can go further and ask, if f is multiplicative and $f(1) \neq 0$ is f^{-1} multiplicative?

Theorem 3.41 If f is multiplicative and has an inverse f^{-1} then the inverse is multiplicative.

Proof Assume that f is multiplicative. Then $f(1)=1 \neq 0$ and so by the previous theorem f has an inverse, defined iteratively by $f^{-1}(1)=1$ and

$$
\begin{equation*}
f^{-1}(N)=-\sum_{\substack{d \mid N \\ d \neq N}} f^{-1}(d) f\left(\frac{N}{d}\right) \tag{17}
\end{equation*}
$$

for all $N \geq 2$.
We require to show that $f^{-1}\left(m_{1} m_{2}\right)=f^{-1}\left(m_{1}\right) f^{-1}\left(m_{2}\right)$ for all coprime pairs $\left(m_{1}, m_{2}\right)$. The proof is by induction on $m_{1} m_{2}$.

The base case is the coprime pair $\left(m_{1}, m_{2}\right)$ with $m_{1} m_{2}=1$. This is just $m_{1}=m_{2}=1$. From its definition we have $f^{-1}(1)=1$ in which case $f^{-1}(1)=1=f^{-1}(1) f^{-1}(1)$ and so the result holds in this case.

Assume that $f^{-1}\left(m_{1} m_{2}\right)=f^{-1}\left(m_{1}\right) f^{-1}\left(m_{2}\right)$ for all coprime pairs with $m_{1} m_{2} \leq k$, for some $k \geq 2$.

Let $\left(n_{1}, n_{2}\right)$ be a coprime pair with $n_{1} n_{2}=k+1$. Apply (17) with $N=$ $n_{1} n_{2}$ to get

$$
f^{-1}\left(n_{1} n_{2}\right)=-\sum_{\substack{d \mid n_{1} n_{2} \\ d \neq n_{1} n_{2}}} f^{-1}(d) f\left(\frac{n_{1} n_{2}}{d}\right)
$$

Because gcd $\left(n_{1}, n_{2}\right)=1$, there is a one-to-one map between the divisors d of $n_{1} n_{2}$ and the pairs of divisors $\left(d_{1}, d_{2}\right)$ with $d_{1} \mid n_{1}$ and $d_{2} \mid n_{2}$. Thus

$$
f^{-1}\left(n_{1} n_{2}\right)=-\sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\ d_{1} d_{2} \neq n_{1} n_{2}}} f^{-1}\left(d_{1} d_{2}\right) f\left(\frac{n_{1}}{d_{1}} \frac{n_{2}}{d_{2}}\right)
$$

In this sum $d_{1} d_{2} \neq n_{1} n_{2}$ and so $d_{1} d_{2}<n_{1} n_{2}$, i.e. $d_{1} d_{2} \leq k$. By the inductive hypothesis $f^{-1}\left(d_{1} d_{2}\right)=f^{-1}\left(d_{1}\right) f^{-1}\left(d_{1}\right)$. Hence

$$
\begin{align*}
f^{-1}\left(n_{1} n_{2}\right) & =-\sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\
d_{1} d_{2} \neq n_{1} n_{2}}} f^{-1}\left(d_{1}\right) f^{-1}\left(d_{2}\right) f\left(\frac{n_{1}}{d_{1}}\right) f\left(\frac{n_{2}}{d_{2}}\right) \\
& =-\sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\
d_{1} \neq n_{1}, d_{2} \neq n_{2}}} \ldots-\sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\
d_{1}=n_{1}, d_{2} \neq n_{2}}} \ldots-\sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\
d_{1} \neq n_{1}, d_{2}=n_{2}}} \ldots \tag{18}
\end{align*}
$$

The first term here equals

$$
\begin{aligned}
& -\left(-\sum_{\substack{d_{1} \mid n_{1} \\
d_{1} \neq n_{1}}} f^{-1}\left(d_{1}\right) f\left(\frac{n_{1}}{d_{1}}\right)\right)\left(-\sum_{\substack{d_{2} \mid n_{2} \\
d_{2} \neq n_{2}}} f^{-1}\left(d_{2}\right) f\left(\frac{n_{2}}{d_{2}}\right)\right) \\
& \quad=-f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right)
\end{aligned}
$$

by (17) applied twice with $N=n_{1}$ and $N=n_{2}$. The second term in (18) equals

$$
\begin{aligned}
& \sum_{\substack{d_{1}\left|n_{1} d_{2}\right| n_{2} \\
d_{1}=n_{1}, d_{2} \neq n_{2}}} f^{-1}\left(d_{1}\right) f^{-1}\left(d_{2}\right) f\left(\frac{n_{1}}{d_{1}}\right) f\left(\frac{n_{2}}{d_{2}}\right) \\
& =\sum_{\substack{d_{2} \mid n_{2} \\
d_{2} \neq n_{2}}} f^{-1}\left(n_{1}\right) f^{-1}\left(d_{2}\right) f(1) f\left(\frac{n_{2}}{d_{2}}\right) \\
& =-f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right),
\end{aligned}
$$

by (17) applied with $N=n_{2}$. And the same result holds for the third term in (18). Thus

$$
\begin{aligned}
f^{-1}\left(n_{1} n_{2}\right) & =-f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right)+f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right)+f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right) \\
& =f^{-1}\left(n_{1}\right) f^{-1}\left(n_{2}\right)
\end{aligned}
$$

So the result holds for all coprime pairs with product $k+1$. Hence, by induction, the result holds for all coprime pairs, i.e. f^{-1} is multiplicative.

