
3. Appendix Inverses of Arithmetic functions

A result stated and not proved in the lectures was

Theorem 3.40 An arithmetic function f has an inverse under ∗ if, and

only if, f (1) 6= 0.

Proof (⇒) Assume f has an inverse, g say, so g ∗ f = δ. In particular
g ∗ f(1) = δ(1) = 1, i.e.

g(1) f(1) = 1. (15)

Hence f(1) 6= 0.

(⇐) Assume that f(1) 6= 0. Define g inductively.

So start with g (1) f(1) = 1, i.e. g (1) = 1/f(1).

Assume that g (n) has been defined for all 1 ≤ n ≤ k. Define g (k+1) to
ensure that

∑

ab=k+1

g (a) f(b) = 0, i.e. g (k+1) f(1) = −
∑

ab=k+1
a 6=k+1

g (a) f(b) . (16)

This definition makes sense. In the sum on the right hand side we have
ab = k+1 and a 6= k+1, in which case a ≤ k and we have assumed g has
already been defined on these a and the values can be fed in to give the
definition of g (k+1).

In this way the infinite sequence of equalities

g ∗ f(1) = δ (1) = 1,

g ∗ f(2) = δ (2) = 0,

g ∗ f(3) = δ (3) = 0,
...

are satisfied. Thus
∑

ab=n

g(a) f(b) = δ(n) ,

for all n ≥ 1 which means g ∗ f = δ. �
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We can go further and ask, if f is multiplicative and f(1) 6= 0 is f−1

multiplicative?

Theorem 3.41 If f is multiplicative and has an inverse f−1 then the inverse

is multiplicative.

Proof Assume that f is multiplicative. Then f(1) = 1 6= 0 and so by the
previous theorem f has an inverse, defined iteratively by f−1(1) = 1 and

f−1(N) = −
∑

d|N
d 6=N

f−1(d) f

(

N

d

)

, (17)

for all N ≥ 2.

We require to show that f−1(m1m2) = f−1(m1) f
−1(m2) for all coprime

pairs (m1,m2). The proof is by induction on m1m2.

The base case is the coprime pair (m1,m2) with m1m2 = 1. This is
just m1 = m2 = 1. From its definition we have f−1(1) = 1 in which case
f−1(1) = 1 = f−1(1) f−1(1) and so the result holds in this case.

Assume that f−1(m1m2) = f−1(m1) f−1(m2) for all coprime pairs with
m1m2 ≤ k, for some k ≥ 2.

Let (n1, n2) be a coprime pair with n1n2 = k+1. Apply (17) with N =
n1n2 to get

f−1(n1n2) = −
∑

d|n1n2

d 6=n1n2

f−1(d) f
(n1n2

d

)

.

Because gcd (n1, n2) = 1, there is a one-to-one map between the divisors d of
n1n2 and the pairs of divisors (d1, d2) with d1|n1 and d2|n2. Thus

f−1(n1n2) = −
∑

d1|n1 d2|n2

d1d2 6=n1n2

f−1(d1d2) f

(

n1

d1

n2

d2

)

In this sum d1d2 6= n1n2 and so d1d2 < n1n2, i.e. d1d2 ≤ k. By the inductive
hypothesis f−1(d1d2) = f−1(d1) f

−1(d1). Hence

f−1(n1n2) = −
∑

d1|n1 d2|n2

d1d2 6=n1n2

f−1(d1) f
−1(d2) f

(

n1

d1

)

f

(

n2

d2

)

= −
∑

d1|n1 d2|n2

d1 6=n1,d2 6=n2

...−
∑

d1|n1 d2|n2

d1=n1,d2 6=n2

...−
∑

d1|n1 d2|n2

d1 6=n1,d2=n2

... (18)
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The first term here equals

−









−
∑

d1|n1

d1 6=n1

f−1(d1) f

(

n1

d1

)

















−
∑

d2|n2

d2 6=n2

f−1(d2) f

(

n2

d2

)









= −f−1(n1) f
−1(n2)

by (17) applied twice with N = n1 and N = n2. The second term in (18)
equals

∑

d1|n1 d2|n2

d1=n1,d2 6=n2

f−1(d1) f
−1(d2) f

(

n1

d1

)

f

(

n2

d2

)

=
∑

d2|n2

d2 6=n2

f−1(n1) f
−1(d2) f(1) f

(

n2

d2

)

= −f−1(n1) f
−1(n2) ,

by (17) applied with N = n2. And the same result holds for the third term
in (18). Thus

f−1(n1n2) = −f−1(n1) f
−1(n2) + f−1(n1) f

−1(n2) + f−1(n1) f
−1(n2)

= f−1(n1) f
−1(n2) .

So the result holds for all coprime pairs with product k + 1. Hence, by
induction, the result holds for all coprime pairs, i.e. f−1 is multiplicative. �
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